
1

Introduction to Temporal Logic

Mads Dam

Theoretical Computer Science

KTH, 2009

About the Course

• Lecturers

• Content

• Examination

• Lecture material

• Registration

2

What is TL About?

Formalised properties of time-varying systems

• What time-varying systems?
• What properties?
• Algorithms
• Proof systems

Our tasks:
• Show we can do useful stuff with this
• Understand and compare set-ups for expressiveness

and tractability

This is why we think
formalisation pays off

Some form of tractability

What Time-Varying Systems?

• Continuous real-valued functions?

• Discrete program traces?

• Execution trees?

• Automata?

• Markov chains?

• Java code?

• Distributed processes?

• Real time? Or implicit time?

• Histories or future?

• Finite or infinite?

• Linear or branching? Tree shaped? Graph shaped?

3

Default Choice – Traces/Paths/Runs
Time is discrete

Starts at 0

Goes on forever

Time points decorated by events

Or conditions/truth assignments/valuations

Or execution traces

0 1 2 3 … …n -1 n n +1

0 1 2 3 … …n -1 n n +1

a b a d foo a bar

0 1 2 3 … …n -1 n n +1

P,Q P,Q
P,Q P,Q P,Q P,Q

P, Q

0 1 2 3 … …n -1 n n +1

x=0
y=0

x=1
y=0

x=8
y=0

x=3
y=1

x=5
y=2

x=0
y=0

x=0
y=0

How Are Traces Produced?

• Maximal runs through a transition system/automaton
– (Q,R,Q0)
– Q set of states
– R  Q  Q transition relation, total
– Q0  Q initial states
– Traces/runs w = q0 R q1 R … R qn-1 R qn R …

In practice:
• Take your favourite programming/modeling language
• Equip it with discrete transition semantics
• Determine what should be observable events /

conditions / execution states
• (Add looping at the end to get traces to be infinite)
• Off you go

4

Example - Concurrent While Language

Commands:

Cmd ::= skip | x := e | Cmd;Cmd | if e Cmd Cmd

| while e Cmd | await e Cmd | spawn Cmd

| Cmd || Cmd

Stores   x fin v  Val

Configurations c ::=  | <Cmd, >

Example II

Transitions:
•  ->  (… just to get looping …)
• <skip,> -> 
• <x:=e,> -> [x  ||e||
• <Cmd1;Cmd2,> -> <Cmd1’;Cmd2,’>

if <Cmd1,> -> <Cmd1’,’>
• <Cmd1;Cmd2,> -> <Cmd2,’>

if <Cmd1,> -> ’
• (… remaining rules in class …)

Conditions: Boolean/FO expressions in dom()

Traces: c0 -> c1 -> c2 -> … -> cn-1 -> cn -> …

5

Linear Time Temporal Logic, LTL

Logic of temporal relations between events in a trace:
– Invariably (along this execution) x ≤ y + z
– Sometime (along this execution) an acknowledgement packet

is sent
– If thread T is infinitely often enabled (along this execution) then

T is eventually executed

By no means the last word:
– Last packet received along channel a (along this execution)

had the shape (b,c,d) (past)
– For all executions (from this state) there is an execution along

which a reply is eventually sent (branching)
– No matter what choice B made in the past, it would necessarily

come to pass that  (historical necessity)

LTL

Syntax:

 ::= P | ¬ | Æ | F | G |  U  | O

Intuitive semantics:

– P: Propositional constant P holds now/at the current time
instant

– F: At some future time instant  is true

– G: For all future time instants  is true

–  U :  is true until  becomes true

– O:  is true at the next time instant

6

Pictorially

...……………F

G

...… U 

...…O

Semantics
Run w
Satisfaction relation w ² 
Assume valuation v
v(P): Set of states for which P holds
wk: k’th suffix of w

w ² P iff w(0) ∈ v(P)
w ² ¬ iff not w ² 
w ²  Æ  iff w ²  and w ² 
w ² F iff exists k  0. wk ² 
w ² G iff for all k  0. wk ² 
w ²  U  iff exists k  0. wk ²  and for all i: 0 ≤ i < k. wi ² 
w ² O iff w1 ² 

For transition system T = (Q,R,Q0) and all valuations v:
T ²  iff for all runs w of T, w ² 

7

Some LTL Formulas

•  Ç  = ¬(¬ Æ ¬)
• →  = ¬ Ç 
• F = true U 
• G = ¬F¬
•  V  = [] Ç ( U (Æ))

– (sometimes called ”release”)

• FG
–  holds from some point forever =  holds almost always

• GF
–  holds infinitely often (i.o.)

• GF→ GF
– if  holds infinitely often then so does 
– Is this the same as G(F  F)? As GF(  )? As FG  

GF( F)?

Spring Example

Conditions: extended, malfunction

Sample paths:

• q0 q1 q0 q1 q2 q2 q2 ...

• q0 q1 q2 q2 q2 ...

• q0 q1 q0 q1 q0 q1 ...

q0 q1 q2
pull

release

release

extended extended
malfunction

8

Satisfaction by Single Path

extended?

Oextended?

OOextended?

Fextended?

Gextended?

FGextended?

FGmalfunction?

q0 q1 q2
pull

release

release

extended extended
malfunction

w = q0q1q0q1q2q2q2 ...

GFextended?

extended U malfunction?
(¬extended) U extended?
(Fextended) U malfunction?
(F¬extended) U malfunction?
G(¬extended → Oextended)

For r:

Satisfaction by Transition System

q0 q1 q2
pull

release

release

extended extended
malfunction

T:

extended?

Oextended?

OOextended?

Fextended?

Gextended?

FGextended?

FGmalfunction?

GFextended?

extended U malfunction?
(¬extended) U extended?
(Fextended) U malfunction?
(F¬extended) U malfunction?
G(¬extended → Oextended)

For T:

9

Example: Mutex

Assume there are 2 processes, Pl and Pr

State assertions:
– tryCSi: Process i is trying to enter critical section

E.g. tryCSl: pcl = l4
– inCSi: Process i is inside its critical section

E.g. inCSl: pcl = l5 Ç pcl = l6
Mutual exclusion:

G(¬(inCSl Æ inCSr))
Responsiveness:

G(tryCSi → F inCSi)
Process keeps trying until access is granted:

G(tryCSi → ((tryCSi U inCSi) Ç GtryCSi))

Example: Fairness
States: Pairs (q,)

 label of last transition taken, so
q→ q’

(q,) → (q’,)

: Finite set of labels partitioned into subsets P

P: ”(finite) set of labels of some process”

State assertions:
– enP: Some transition labelled  ∈ P is enabled

i.e. (q,)∈ v(en) iff ∃ q’.q→ q’

– execP: Label of last executed transition is in P

i.e. (q,)∈ v(execP) iff ∈ P

Note: enP ↔ Ç∈ Pen{} and execP ↔ Ç∈ Pexec{}

10

Fairness Conditions

Weak transition fairness:
Æ∈¬FG(en{ Æ ¬ exec{)

Or equivalently
Æ∈(FGen{} → GFexec{})

Strong transition fairness:
Æ∈(GFen{} → GFexec{})

Weak process fairness:
ÆP¬FG(enP Æ ¬ execP)

Strong process fairness:
ÆP (GFenP → GFexecP)

(Many other variants are possible)

Exercise: Figure out which implications hold between
these four fairness conditions. Draw a picture

Branching Time Logic

Sets of paths? Or computation tree?

. .
 .

.

. .
 .

.

. .
 .

.

. .
 .

.

. .
 .

.

11

Computation Tree Logic - CTL
Syntax:
 ::= P | ¬ | Æ | AF | AG | A( U  | AX

Formulas hold of states, not paths

A: Path quantifier, along all paths from this state

So:
– AF: Along all paths, at some future time instant  is true
– AG: Along all paths, for all future time instants  is true
– A( U : Along all paths,  is true until  becomes true
– AX:  is true for all next states

Note: CTL is closed under negation so also express dual modalities
EF, EG, EU, EX (E is existential path quantifier). Check!

CTL, Semantics
Valuation v: P Q’ ⊆ Q as before

q ² P iff q ∈ v(P)
q ² ¬ iff not q ² 
q ²  Æ  iff q ²  and q ² 
q ² AF iff for all w such that w(0)=q exists k∈N such that w(k) ² 
q ² AG iff for all w such that w(0)=q, for all k∈N, w(k) ² 
q ² A( U ) iff for all w such that w(0)=q, exists k∈N such that w(k) ²

 and for all i: 0≤ i < k. w(i) ² 
q ² AX iff for all w such that w(0) = q, w(1) ² 

(iff for all q’ such that q → q’, q’² )

For transition system T = (Q,R,Q0):
T ²  iff for all q0∈ Q, q ² 

12

CTL – LTL: Brief Comparison

LTL in branching time framework:
–  A ( to hold for all paths)

CTL * LTL: EF not expressible in LTL

LTL * CTL: FGP not expressible in CTL

CTL*: Extension of CTL with free alternation A, F, G, U, X

Advantages and disadvantages:
– LTL often ”more natural”
– Satisfiability: LTL: PSPACE complete, CTL: DEXPTIME

complete
– Model checking: LTL: PSPACE complete, CTL: In P

Adding Past

Add to LTL pasttime versions of the LTL future time
modalities

Previously, some time in the past, always in the past,
since

Theorem (Gabbay’s separation theorem): Every formula
in LTL + past is equivalent to a boolean combination of
”pure pasttime” or ”pure future time” formulas

Note: This applies regardless of whether time starts at 0
or at -

Theorem (Elimination of past): Pasttime modalities do not
add expressive power to LTL

But:
Theorem (Succinctness, LMS’02): LTL + past is

exponentially more succinct than LTL

13

Expressive Completeness

LTL is easily embedded into FOL + linear order

FOL + linear order: First-order logic with 0 and <, unary
predicate symbols, and interpreted over 

Theorem (Kamp’68, GPSS’80, Expressive completeness)

If L is definable in FOL + linear order then L is definable in
LTL

So Are We Done?

What about ”every even state”

Theorem: A”every even state”P is not expressible in LTL,
CTL, CTL*

One solution:

• LTL formulas determine infinite words

• So: skip temporal logic (… temporarily …) and use
automata on infinite words instead

0 1 2 3 … …2n-1 2n 2n+1

P P PP PP P

14

Automata Over Finite Words

Finite state automaton A = (Q,,,I,F):
– Q: Finite set of states
– : Finite alphabet
–  ⊆ Q×  × Q: Transition relation

Write q→a q’ for (q,a,q’) as before
– I⊆ Q: Start states
– F⊆ Q: Accepting states

Word a1a2...an is accepted, if there is sequence
q0 →

a1 q1 →
a2 ... →an qn

such that q0∈ I and qn∈ F

a

a

b

b

Automata Over Infinite Words

Letters a∈ can represent events, conditions, states

Infinite word w  :
– Function w: → 
– Equivalently: Infinite sequence w = a0a1a2 ... an ...
– Terminology: -words
– -words are traces / paths / runs

Buchi automaton: Finite state automaton, but on infinite
words

-word w is accepted if accepting state visited infinitely
often

-language L   is Buchi definable if L is the set of -
words accepted by some B. A.

(!)

15

Example

Which infinite words are accepted?
– ababab ... (= (ab)) ?

– aaaaaa... (= a) ?

– bbbbbb... (= b) ?

– aaabbbbb... (= aaab) ?

– ababbabbbabbbba... ?

a

a

b

b

Nondeterminism

• What is the language accepted by this automaton?

• What is the corresponding LTL property if b = inCS and
a = ¬ b?

a,b

a
a

16

Another Example

Letters represent propositions

Example: GFinCS, a=inCS, b=¬ inCS

a

a

b

b

Yet More Examples

• a = inCS1 Æ inCS2

• b = ¬ a

• c = true

• Property: G¬ a

• Property: G(d → Fe)

• Idea:
– q0; Have seen ¬ d Ç e

– q1: Saw d, now wait for e

b

a
c

Or just:

b

d → e

dÆ ¬e

¬e

e

q0 q1

17

Even More...

Property: G(a → (bUc))

Idea:
– q0: Body of G immediately ok

– q1: Awaiting c

Property: G(a → (bUc)) = F(a Æ (bUc))

Idea:
– (bUc): b becomes false some time without c having become

true first

– q0: Waiting ...

– q1: Have seen a with b and c

– q2: Committing ...

q0 q1

¬ a Ç c

a Æ b Æ ¬ c

b Æ ¬ c

c

q0 q1

true b Æ ¬ c
a Æ b Æ ¬ c

q2aÆ ¬ b Æ ¬ c ¬ b Æ¬ c

true

Generally

Theorem: If L is LTL definable then L is the set of words
accepted by some B.A.

Why? The set of B.A. recognizable languages is closed
under all LTL connectives

Hard case is complementation [Safra’88]

BTW then we can do LTL model checking:

• Represent model as B.A. A1

• Represent LTL spec as A2

• Emptiness of L(A) = {w | A accepts w} is polynomially
decidable

• L(A1)  L(A2) iff L(A1)   L(A2) is empty

• Example: The SPIN model checker

18

Aside: Deterministic Buchi Automata

Consider  = FGa where  = {a,b}

Suppose A recognizes 
A deterministic
A reaches accepting state on some input an1

And on an1ban2

And on an1ban2ban3

And on an1ban2ban3b ... b ... b ...
So: Nondeterministic Buchi automata strictly more

expressive than deterministic ones
And: Deterministic B. A. not closed under complement

a,b
a

a

Temporal Equations

Idea: Extend LTL with solutions of equations

• F =   OF
• G =   OG
•  U  =   (  O( U ))

• Even  =   OOEven 

Complication: Solutions are not unique

Exercise: How many solutions (as sets L of traces/words
w) can you find to the above four equations?

19

The Linear Time -calculus, L

Formula (X) in free formula variable X determines
function  : L  (L)

If (X) is monotone in X then ||  || is monotone as
function on ({L | L  },)

Theorem (Tarski’s fixed point theorem): A monotone
function on a complete lattice has a complete lattice of
fixed points

So, for each monotone (X) can find a largest and a
smallest solution of equation X = (X)

L

Notation:
• X.(X): Least solution of X = (X)
• X.(X): Greatest solution of X = (X)

Note:
• F = X.   OX
• G = X.  OX
•  U  = X.   (  OX)
• Even  = X.  OOX

Exercise: Exchange  and  in the 4 examples above.
What property is defined?

Hint: Which is the largest, resp. smallest L that solves the
equation?

20

Expressiveness of L

Theorem: An -language is definable in L iff it is
recognized by a B.A.

Direct proof:

: Represent B.A. in L (easy)

: Show that B.A. definable languages are closed under
all L connectives. Hard part is , cf. (Dam, 92)

But many alternative characterizations exist

Alternative Characterizations

S1S: Monadic second order logic of successor
∃ X(0∈ X Æ ∀y∀z(succ(y,z) → (y∈X ↔ ¬ z∈X))

Æ ∀y(y∈X → a(y)))
(all even symbols are a’s)

QPLTL: LTL with propositional quantification
∃ X((X Æ G(X ↔ O¬X) Æ G(x → a))

-regular expressions
a((a ∪ b)a)

Theorem (Buchi et al): An -language is recognized by a
B.A. iff it is definable in one of L, S1S, QPLTL, or as an
-regular expression

21

What About Branching Time?

More difficult. Starting point are binary trees:

Theorem (Rabin): S2S (the monadic second-order theory
of two successors) is decidable

For more general structures use e.g.
• Alternating tree automata
• Modal \mu-calculus
• Parity games

Much activity in the past 10 years

But this is outside the scope of this course

