Introduction to Temporal Logic

Mads Dam
Theoretical Computer Science
KTH, 2009

About the Course

Lecturers
Content
Examination
Lecture material
Registration

What is TL About?

Formalised properties of time-varying systems

» What time-varying systems?
* What properties?

» Algorithms This is why we think
 Proof systems formalisation pays off

/

Some form of tractability

Our tasks:
* Show we can do useful stuff with this

» Understand and compare set-ups for expressiveness
and tractability

What Time-Varying Systems?

e Continuous real-valued functions?
» Discrete program traces?

» Execution trees?

* Automata?

» Markov chains?

e Java code?

» Distributed processes?

* Real time? Or implicit time?
 Histories or future?

* Finite or infinite?

» Linear or branching? Tree shaped? Graph shaped?

Default Choice — Traces/Paths/Runs

Time is discrete
Starts at 0
Goes on forever

I I I I I I I
r T T T T T T

0 1 2 3 n-1n n+l
Time points decorated by events
a b a d foo a bar
0O 1 2 3 n-1n n+l
Or conditions/truth assignments/valuations
P,_\Q _\P,_| - y
PQ —-P-Q P.Q P.Q
0 1 2 3 n-1n n+l1
Or execution traces
x=0 x=1 x=8 x=3 x=5 x=0 x=0
y=0 y=0 y=0 y=1 y=2 y=0 y=0
o 1 2 3 n-1n n+l

How Are Traces Produced?

* Maximal runs through a transition system/automaton
- (Q!RIQO)

— Q set of states

— R < Q x Q transition relation, total

— Qu < Q initial states

— Tracesfrunsw=q,Rq; R...Rq,; R, R ...

In practice:
» Take your favourite programming/modeling language
» Equip it with discrete transition semantics

+ Determine what should be observable events /
conditions / execution states

(Add looping at the end to get traces to be infinite)
» Off you go

Example - Concurrent While Language

Commands:

Cmd ::=skip | x:=e | Cmd;Cmd | if e Cmd Cmd
| while e Cmd | await e Cmd | spawn Cmd
| Cmd || Cmd

Stores ¢ € X >4, v € Val

Configurations ¢ ::= o | <Cmd, >

Example Il

Transitions:
* 0o->0 (... justto getlooping ...)
e <skip,c>->c
+ <Xxi=e,c>->g[X > ||e]|o]
+ <Cmd,;;Cmd,,c> -><Cmd,";,Cmd,,c">
if <Cmd,,c> -> <Cmd,’,c">
¢ <Cmd,;Cmd,,c>-><Cmd,,c">
if <Cmd,,c>->¢’
* (... remaining rules inclass ...)

Conditions: Boolean/FO expressions in dom(c,)

Traces:cy->Cy->Cy-> ... ->Cp ->Cy-> ...

Linear Time Temporal Logic, LTL

Logic of temporal relations between events in a trace:
— Invariably (along this execution) x <y +z
— Sometime (along this execution) an acknowledgement packet
is sent

— If thread T is infinitely often enabled (along this execution) then
T is eventually executed

By no means the last word:
— Last packet received along channel a (along this execution)
had the shape (b,c,d) (past)
— For all executions (from this state) there is an execution along
which a reply is eventually sent (branching)
— No matter what choice B made in the past, it would necessarily
come to pass that y (historical necessity)

LTL

Syntax:
¢:=P 0| oAd|F|Go|oUd|Oh

Intuitive semantics:

P: Propositional constant P holds now/at the current time
instant

F¢: At some future time instant ¢ is true
G¢: For all future time instants ¢ is true
¢ U y: ¢ is true until v becomes true
O¢: ¢ is true at the next time instant

Pictorially

Go: ¢ ¢ ¢ ¢ ¢ ¢

o Uy ¢ o ¢ ¢ 1

Od:)

Semantics

Run w

Satisfaction relation wE ¢

Assume valuation v

v(P): Set of states for which P holds
wk: k'th suffix of w

w E P iff w(0) € v(P)

wE —¢iffnotwE ¢

wkEOAyiffwEpandwE v

w E F¢ iff exists k> 0. wk = ¢

wk Goiff forallk > 0. wkE ¢

wkE ¢ U yiffexists k> 0. wkEyandforalli: 0 <i<k . wE¢
wE O¢iffwt E ¢

For transition system T = (Q,R,Q,) and all valuations v:
TE ¢iffforall runswof T, wWE ¢

Some LTL Formulas

© OV Y =(-d Ay
* b= y=9Vy
* Fo=trueU ¢
« Gp=-F-d
* OVy=[lyV(yU (9 Ay)
— (sometimes called "release”)
» FG¢
— ¢ holds from some point forever = ¢ holds almost always
« GF¢
— ¢ holds infinitely often (i.0.)
* GFd — GFy
— if ¢ holds infinitely often then so does v

— Is this the same as G(F¢ — Fy)? As GF(¢ > ¢v)? AsFG— ¢ v
GF(¢n Fy)?

Spring Example

release

q {q release (q
0 pull \y 2
extended extended

malfunction

Conditions: extended, malfunction

Sample paths:

* 0001909192920, -
* 0091929205 -

* 00019091 9009; -

Satisfaction by Single Path

release

|
m — @O W = 0, 00; 0,00 ---
ded

extended exten
malfunction

Forr:
extended? GFextended?
Oextended? extended U malfunction?
OOextended? (—extended) U extended?
Fextended? (Fextended) U malfunction?
Gextended? (F—extended) U malfunction?
FGextended? G(—extended — Oextended)
FGmalfunction?

Satisfaction by Transition System

T m release
) 0 pull N

For T:

extended?
Oextended?
OOextended?
Fextended?
Gextended?
FGextended?
FGmalfunction?

@O
extended extended

malfunction

GFextended?

extended U malfunction?
(—extended) U extended?
(Fextended) U malfunction?
(F—extended) U malfunction?
G(—extended — Oextended)

Example: Mutex

Assume there are 2 processes, P, and P,
State assertions:
— tryCS;: Process i is trying to enter critical section
E.g. tryCS;: pc, =1,
— inCS;: Process i is inside its critical section
E.g.inCS;:pc, =I5V pc =1
Mutual exclusion:
G(—(inCS,; A INCS)))
Responsiveness:
G(tryCS; — F inCS))
Process keeps trying until access is granted:
G(tryCS; — ((tryCS; U inCS)) v GtryCS)))

Example: Fairness

States: Pairs (q,a)
o label of last transition taken, so
q—*q
(@.p) = (q',0)
>: Finite set of labels partitioned into subsets P
P: "(finite) set of labels of some process”

State assertions:
— eng: Some transition labelled o € P is enabled
i.e. (g,p)e v(en) iff 3g.q—*q’
— execp: Label of last executed transition is in P
i.e. (g,0)€ v(execy) iff ac P
Note: enp < V. peNy,, and execy <> V. pEXec,

Fairness Conditions

Weak transition fairness:
NoesFG(ENg,, A — EXEC,,)
Or equivalently
Noes(FGeNy, — GFexec,))
Strong transition fairness:
Noes(GFeny, — GFexecy,))
Weak process fairness:
Np—FG(en, A — execp)
Strong process fairness:
Np (GFen, — GFexecp)
(Many other variants are possible)

Exercise: Figure out which implications hold between
these four fairness conditions. Draw a picture

Branching Time Logic

Sets of paths? Or computation tree?

Computation Tree Logic - CTL

Syntax:
¢ =P ¢ | oAD | ARG | AGH | A9 U ¢) | AXd

Formulas hold of states, not paths
A: Path quantifier, along all paths from this state

So:

AF¢: Along all paths, at some future time instant ¢ is true
AG¢: Along all paths, for all future time instants ¢ is true
A(¢ U y): Along all paths, ¢ is true until y becomes true
AX¢: ¢ is true for all next states

Note: CTL is closed under negation so also express dual modalities
EF, EG, EU, EX (E is existential path quantifier). Check!

CTL, Semantics

Valuation v: P —~ Q' C Q as before

gk Piffq e v(P)
gqE-¢iffnotgkE ¢
gEdAyiffgEdandgFE v
g E AF¢ iff for all w such that w(0)=q exists keN such that w(k) = ¢
g E AG¢ iff for all w such that w(0)=q, for all keN, w(k) E ¢
g E A9 U) iff for all w such that w(0)=q, exists keN such that w(k) F
yand foralli: 0<i<k. w(i)F ¢
g E AX¢ iff for all w such that w(0) = q, w(1) F ¢
(iff for all g’ such that g — q’, 'E ¢)

For transition system T = (Q,R,Q,):
T E ¢ iff for all gy Q,, qy F ¢

11

CTL — LTL: Brief Comparison

LTL in branching time framework:
— ¢+ Ad (¢ to hold for all paths)

CTL ¢ LTL: EF¢ not expressible in LTL

LTL ¢ CTL: FGP not expressible in CTL
CTL*: Extension of CTL with free alternation A, F, G, U, X

Advantages and disadvantages:
— LTL often "more natural”

— Satisfiability: LTL: PSPACE complete, CTL: DEXPTIME
complete

— Model checking: LTL: PSPACE complete, CTL: In P

Adding Past

Add to LTL pasttime versions of the LTL future time
modalities

Previously, some time in the past, always in the past,
since

Theorem (Gabbay’s separation theorem): Every formula
in LTL + past is equivalent to a boolean combination of
"pure pasttime” or "pure future time” formulas

Note: This applies regardless of whether time starts at 0
or at -oo

Theorem (Elimination of past): Pasttime modalities do not
add expressive power to LTL

But:

Theorem (Succinctness, LMS’02): LTL + pastis
exponentially more succinct than LTL

12

Expressive Completeness

LTL is easily embedded into FOL + linear order

FOL + linear order: First-order logic with 0 and <, unary
predicate symbols, and interpreted over o

Theorem (Kamp’68, GPSS’80, Expressive completeness)

If L is definable in FOL + linear order then L is definable in
LTL

So Are We Done?

What about "every even state”

PP P P P P P
01 2 3 2n-12n2n+1

Theorem: A”every even state”P is not expressible in LTL,
CTL, CTL"

One solution:
e LTL formulas determine infinite words

» So: skip temporal logic (... temporarily ...) and use
automata on infinite words instead

13

Automata Over Finite Words

Finite state automaton A = (Q,Z,A,l,F):
— Q: Finite set of states
¥: Finite alphabet
A C Qx X x Q: Transition relation
Write g—2 ' for A(g,a,q") as before
| C Q: Start states a
F C Q: Accepting states

b

Word a,a,...a, is accepted, if there is sequence
go =21 q, =2 ... =anq,
such that g€ | and g,€ F

a

Automata Over Infinite Words

Letters acX can represent events, conditions, states

Infinite word w € Xe:
— Functionw: ©® — 2
— Equivalently: Infinite sequence w = aja,a, ... a, ...
— Terminology: w-words
— o-words are traces / paths / runs

Buchi automaton: Finite state automaton, but on infinite
words

w-word w is accepted if accepting state visited infinitely
often

wo-language L < 2¢is Buchi definable if L is the set of -
words accepted by some B. A.

O]

14

Example

cSliEey;

b

Which infinite words are accepted?

— ababab ... (= (ab)®) ?
— aaaaaa... =av) 72
— bbbbbb... (=b) 2
— aaabbbbb... (= aaab®) ?
— ababbabbbabbbba... ?

Nondeterminism

* What is the language accepted by this automaton?
* What is the corresponding LTL property if b = inCS and

a=-b?
T

15

Another Example

Letters represent propositions

Example: GFIinCS, a=inCS, b=-inCS

a

b

Yet More Examples

« a=inCS; A InCS,

e Cc=true
b

* Property: G—a .
Or just: @
b

* Property: G(d — Fe)

* ldea: ‘ ‘
- gy Haveseen-dVve dn —e @

— q,: Saw d, now wait for e

16

Even More...

Property: G(a — (bUc)) -ave bA-cC

Idea: ‘ ‘
— 0, Body of G immediately ok @

— g,: Awaiting ¢ e
Property: —-G(a — (bUc)) = F(a A —(bUc))
Idea:

— —(bUc): b becomes false some time without c having become
true first true

-bA-cC

' true

— 0,: Committing ... an-bAa-c

bAa-c
0o- Waiting ... q aAbA=cC q
0, Have seen a with b and —c 0 I !

Generally

Theorem: If L is LTL definable then L is the set of words
accepted by some B.A.

Why? The set of B.A. recognizable languages is closed
under all LTL connectives

Hard case is complementation [Safra’88]

BTW then we can do LTL model checking:

* Represent model as B.A. A,

* Represent LTL spec as A,

» Emptiness of L(A) = {w | A accepts w} is polynomially
decidable

« L(A) cL(A)) iff L(A)) N = L(A,) is empty

» Example: The SPIN model checker

17

Aside: Deterministic Buchi Automata

Consider ¢ = FGa where X = {a,b}

Suppose A recognizes ¢

A deterministic

A reaches accepting state on some input a"
And on a"ban?

And on a"ba"?ban3

And on a"ba"ba™b...b ... b ...

So: Nondeterministic Buchi automata strictly more
expressive than deterministic ones

And: Deterministic B. A. not closed under complement

~H)

Temporal Equations

Idea: Extend LTL with solutions of equations

F¢=¢ v OF¢

G =¢ A OGO

* Uy =yv(0AO(@Uy)
« Even¢ = ¢ A OOEven ¢

Complication: Solutions are not unique

Exercise: How many solutions (as sets L of traces/words
w) can you find to the above four equations?

18

The Linear Time p-calculus, L,

Formula ¢(X) in free formula variable X determines
function ¢ : L (L)

If $(X) is monotone in X then || ¢ || is monotone as
functionon ({L | L < 2¢},©)

Theorem (Tarski’s fixed point theorem): A monotone
function on a complete lattice has a complete lattice of
fixed points

So, for each monotone ¢(X) can find a largest and a
smallest solution of equation X = ¢(X)

Notation:
o uX.¢(X): Least solution of X = ¢(X)
o vX.0(X): Greatest solution of X = ¢(X)

Note:

e Fo=pX. ¢ vOX

e Go=vX.p AOX

* Uy =pX yv(nOX)
* Even ¢ = vX.p A OOX

Exercise: Exchange p and v in the 4 examples above.
What property is defined?

Hint: Which is the largest, resp. smallest L that solves the
equation?

19

Expressiveness of L,

Theorem: An o-language is definable in L, iff it is
recognized by a B.A.

Direct proof:
<: Represent B.A. in L, (easy)

—=: Show that B.A. definable languages are closed under
all L, connectives. Hard part is p, cf. (Dam, 92)

But many alternative characterizations exist

Alternative Characterizations

S1S: Monadic second order logic of successor
3 X(0e X A YyVz(succ(y,z) — (YyeX < — zeX))
A Vy(yeX — a(y)))
(all even symbols are a’s)

QPLTL: LTL with propositional quantification
FX((X A G(X < O=X) A G(x — a))

o-regular expressions
a((au b)a)e

Theorem (Buchi et al): An w-language is recognized by a
B.A. iff itis definable in one of L, S1S, QPLTL, or as an
-regular expression

20

What About Branching Time?

More difficult. Starting point are binary trees:

Theorem (Rabin): S2S (the monadic second-order theory
of two successors) is decidable

For more general structures use e.g.
» Alternating tree automata

* Modal \mu-calculus

» Parity games

Much activity in the past 10 years

But this is outside the scope of this course

21

